Reconstructing 3D compact sets
نویسندگان
چکیده
Reconstructing a 3D shape from sample points is a central problem faced in medical applications, reverse engineering, natural sciences, cultural heritage projects, etc. While these applications motivated intense research on 3D surface reconstruction, the problem of reconstructing more general shapes hardly received any attention. This paper develops a reconstruction algorithm changing the 3D reconstruction paradigm as follows. First, the algorithm handles general shapes i.e. compact sets as opposed to surfaces. Under mild assumptions on the sampling of the compact set, the reconstruction is proved to be correct in terms of homotopy type. Second, the algorithm does not output a single reconstruction but a nested sequence of plausible reconstructions. Third, the algorithm accommodates topological persistence so as to select the most stable features only. Finally, in case of reconstruction failure, it allows the identification of under-sampled areas, so as to possibly fix the sampling. These key features are illustrated by experimental results on challenging datasets, and should prove instrumental in enhancing the processing of such datasets in the aforementioned applications. Key-words: 3D reconstruction, surface reconstruction, distance function, Voronoi diagram, Morse-Smale complex, flow complex, topological persistence. ∗ INRIA Sophia-Antipolis-Méditerranée, Algorithms-Biology-Structure; [email protected] † INRIA Sophia-Antipolis-Méditerranée, Geometrica; [email protected] in ria -0 03 70 20 8, v er si on 1 23 M ar 2 00 9 Reconstruction d’ensembles compacts 3D Résumé : Reconstruire un modèle à partir d’échantillons est un problème central se posant en médecine numérique, en ingénierie inverse, en sciences naturelles, etc. Ces applications ont motivé une recherche substantielle pour la reconstruction de surfaces, la question de la reconstruction de modèles plus généraux n’ayant pas été examinée. Ce travail présente an algorithme visant à changer le paradigme de reconstruction en 3D comme suit. Premièrement, l’algorithme reconstruit des formes générales–des ensembles compacts et non plus des surfaces. Sous des hypothèses appropriées, nous montrons que la reconstruction a le type d’homotopie de l’objet de départ. Deuxièmement, l’algorithme ne génère pas une seule reconstruction, mais un ensemble de reconstructions plausibles. Troisièmement, l’algorithme peut être couplé à la persistance topologique, afin de sélectionner les traits les plus stables du modèle reconstruit. Enfin, en cas d’échec de la reconstruction, la méthode permet une identification aisée des régions sous-echantillonnées, afin éventuellement de les enrichir. Ces points clefs sont illustrés sur des modèles difficiles, et devraient permettre de mieux tirer parti de leurs caractéristiques dans les application sus-citées. Mots-clés : Reconstruction de formes en 3D, reconstruction de surfaces, fonction distance, digramme de Voronoi, diagramme de Morse-Smale, flow complex., persistence topologique. in ria -0 03 70 20 8, v er si on 1 23 M ar 2 00 9 Reconstructing 3D compact sets 3
منابع مشابه
Reconstructing the tongue surface from six cross-sectional contours: ultrasound data
This work presents a method for reconstructing 3D tongue surfaces during speech from ultrasound data. The method reduces the dimensionality of the tongue surface and maintains highly accurate reproduction of local deformation features. This modification is an essential step if multiplane tongue movements are to be reconstructed practically into tongue surface movements. Earlier work (Stone & Lu...
متن کامل?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups
In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...
متن کاملReconstructing 3D Land Surface from a Sequence of Aerial Images
This paper proposes a method for reconstructing a 3D surface landscape from an aerial image sequence captured by a single noncalibrated camera. Reconstructing a 3D surface landscape is more difficult than constructing a landscape of buildings or objects in a room because of the lack of available information about camera parameters, the need for mosaicking of 3D surface elements, and the introdu...
متن کاملCOUNTABLE COMPACTNESS AND THE LINDEL¨OF PROPERTY OF L-FUZZY SETS
In this paper, countable compactness and the Lindel¨of propertyare defined for L-fuzzy sets, where L is a complete de Morgan algebra. Theydon’t rely on the structure of the basis lattice L and no distributivity is requiredin L. A fuzzy compact L-set is countably compact and has the Lindel¨ofproperty. An L-set having the Lindel¨of property is countably compact if andonly if it is fuzzy compact. ...
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Geom.
دوره 45 شماره
صفحات -
تاریخ انتشار 2012